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Finite-Difference Approach to the Solution of
Time-Domain Integral Equations for
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Abstract—A numerical algorithm for the analysis of transient
electromagnetic fields in planar structures is proposed based
on the time-domain magnetic-field integral equation (MFIE),
electric-field integral equation (EFIE), and the marching-on-in-
time approach. The field vectors are represented in terms of
vector potential functions which are calculated either by integra-
tion or by the three-dimensional (3-D) wave equation according to
the geometry of the structure. Thus, the algorithm combines the
advantages of integral equation techniques and finite-difference
schemes. While this approach is applicable to any geometries, it
is especially suitable for multilayered planar structures and is
competitive to the finite-difference time-domain (FDTD) method
in the case of open and radiating problems. Theoretical results are
verified by the analysis of a pulse propagation in a homogeneous
open-end microstrip line.

Index Terms—Integral-equation method, time-domain analysis.

I. INTRODUCTION

SINCE the finite-difference time-domain (FDTD) approach
has been introduced for wide application to transient

electromagnetic fields, the interest in time-domain integral-
equation (TDIE) approaches faded considerably. There were
good reasons for this—high requirements in respect to central
processing unit (CPU) time (integration is much more time
consuming than differentiation), problems with the analysis
of infinitesimally thin plates where the magnetic-field integral
equation (MFIE) is unsuitable [7] and the electric-field integral
equation (EFIE) displays instabilities at later time-steps. In ad-
dition, the implementation of the TDIE was entirely restricted
to scattering (open) problems.

On the other hand, the main advantage of the TDIE, i.e.,
easy treatment of open structures, and reduction of a three-
dimensional (3-D) problem to a two-dimensional (2-D) one,
remains important and attractive for many implementations.
Despite the intensive research for numerical approximations of
radiation/transmission conditions for finite-difference schemes,
there are still problems with their implementation to open
problems. Publications recently appeared which show success-
ful attempts to combine the advantages of finite-difference
techniques with the integral-equation approach [8], [11]. While
[11] combines the FDTD method with the integral equation
technique for remote objects, [8] is entirely based on the TDIE,
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yet applies a finite-difference approach for their solution. This
approach is known to reduce the singularity of the kernel of
the evaluated integrals which now appear to be exactly the
vector potential functions (see R. Mittra, [2]).

A similar approach has been applied in the present method
which shows a further possibility to reduce the CPU time
and memory requirements of the TDIE by calculation of the
vector potential functions by the 3-D wave equation, and
to improve the overall stability by the displacement of the
equivalent magnetic and electric currents by a half-step in
space and by a half-step in time. It presents a new possibility
for the implementation of the TDIE to the analysis of transient
fields in transmission-line problems and scattering from planar
structures. It is equally suited to open and closed problems
but is advantageous in comparison with the FDTD if radiating
boundaries are present. The approach is based on the surface
MFIE and EFIE, thus, reducing the 3-D problem to a 2-
D one. At every surface point, only four tangential field
components are calculated. It is shown that infinite planes can
also be treated by reducing them to finite numerical planes.
The outer-to-numerical plane integration is substituted by a
contour integration of the artificial contour boundary of the
numerical plane. The vector potential functions of self-planes
has been calculated by the 3-D wave equation, which improves
the overall speed of the algorithm.

II. THEORY

A. Time-Domain Integral Equations

The conventional form of the TDIE is [1] as shown in (1)
and (2) at the bottom of the next page, where:is the solid
angle which opens from the point of observationto the
surface of the analyzed volume; is the distance between
and the point of integration ; is the unit vector of (from

to ); is the inward normal of the integrated surface;
is the retarded time; , is the induced electric

and magnetic currents;, are the electric and magnetic
charges; and the operator is .

In the following approach, the EFIE and MFIE are viewed
in a somewhat different way, i.e. the fields are expressed via
the vector potentials

(3)
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(4)

so that the superposition of the fields created by both electric
and magnetic sources yields

(5)

(6)

Here, and are scalar potential functions related to the
vector potentials via the Lorentz gauge condition

(7)

(8)

Now the TDIE can be written as

(9)

(10)

where ; .
From a theoretical point of view, both sets of equations (1),

(2) and (9), (10), are equivalent; however, from a numerical
point of view there are substantial differences: 1) in the type
of integrals involved; 2) in the possibility for application
of a time-space leap-frog scheme to ensure stability of the
time-marching solution; and 3) in the complete elimination
of normal–to–surface field components. The space operators

and are easy to implement for plane surfaces. In
this case also, . After introducing equivalent surface
currents according to the surface relations

(11)

(12)

and a limiting procedure for the observation point approaching
the boundary ([1], [5]) the following equations are obtained:

(13)

(14)

The singularity of the tangential fields at an observation point
lying on the surface results in the coefficient (2) and is a

consequence of the third member of (13), (14), since [3]

The above equations are applied to describe the fields at the
boundary of each region characterized by its parametersand

. At the common interface, they are coupled by the boundary
conditions for their equivalent currents

(15)

(16)

In the case of a conducting surface, , and
the equivalent electric currents, and , which are now
actual currents, are decoupled.

The equations for points at the interface of neighboring
regions are obtained by a linear combination of the equations
for both regions and by using the above boundary conditions
(15) and (16):

a) region 1:

(17)

(18)

b) region 2:

(19)

(20)

Equation (17) is multiplied by and is added to (19).
Similarly, (18) is multiplied by and is added to (20). The

(1)

(2)
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Fig. 1. Open microstrip line.

right choice of coefficients when combining both regions’
equations is discussed in detail in [6]. To obtain a unique
solution, and must satisfy the relation ( ), which is
positive and real. They should also ensure that the coefficients
of the second-derivative-in-time terms become the same. This
is essential for the time-stepping procedure where the self-
patch terms in the right-hand side (RHS) should vanish, thus
providing decoupling of the equations for theand currents
and elimination of the forward-in-time values. Therefore,

and . In the considered example of an
open microstrip structure, region (1) is the dielectric substrate
with the dielectric constant and region (2) is the air region
with (see Fig. 1). For both regions, . This
linear combination finally yields the following equations for
observation points at the dielectric interface:

(21)

(22)

where , are the potentials calculated at retarded time
. Here, is the velocity of light

in the dielectric and are the potentials calculated at
retarded time . The equivalent currents in the
above potential functions also satisfy the boundary conditions
(15), (16). It is now obvious that the self-patch integrals in the
second-derivative-in-time terms will cancel one another due to
the opposite signs of the equivalent currents of both regions
at the interface.

The currents at conducting surfaces are calculated by the
MFIE (14) of the respective region. It is important to note
that the calculation of currents at conducting surfaces by
the separate MFIE of each region, which strongly depend on
the vector functions of the respective plane, ensures correct
calculation even in the case of infinitesimally thin plates. This
is shown in the presented simulations.

B. The Artificial Contour Boundary

The problem of the artificial contour boundary which arises
in infinite cases along the and axes planes are now
considered. The planes of interest must be limited to finite
numerical planes by the artificial contour boundary. These
contours must be sufficiently far away from the source plane
and any discontinuities of the structure. The field components
outside the contour boundary for the radiation condition [4]
can then be imposed

(23)

(24)

where is the distance from a reference point (center of the
source plane) and is the unit vector of . From the above
equations, the following radiation conditions for the equivalent
surface currents are obtained:

(25)

(26)

which is an expected result since the and currents
satisfying the radiation condition are functions of
time. Currents satisfying the above conditions are substituted
in (13) and (14). After some vector manipulations it can be
shown that in the contribution of the outer region currents, all
terms cancel except the integrals

(27)

where denotes the contribution to the internal of the
external-to-numerical region currents . The equation for
the time derivative is dual. Obviously the above surface
integrals reduce to contour integrals

(28)

where is the outward normal to the contour of the outer
region. Thus, the outer region contribution reduces to inte-
gration of the currents at the contour artificial boundary of
the numerical plane. It is then added to the contribution of
the inner patches. When treating the artificial boundary at
the dielectric-to-air interface, the same linear combinations of
equations are applied.

C. Calculation of the Vector Potential Functions

The integral functions and as defined in (3) and (4)
are a superposition of the potentials created by all (equivalent
and actual) sources as if radiating in free space with the
respective dielectric and magnetic constants. There are two
ways of calculating the contribution of every surface plane as
cited below.
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1) Direct Integration: Currents are assumed constant at ev-
ery patch. Therefore, an integral of the type

has to be calculated. Here, denote the number
of space steps between the observation and integration point.
This integral has an analytical solution and is quickly cal-
culated during the time-stepping procedure. The integration
approach is definitely advantageous when the potentials of
remote planes are calculated. Of course, it is also applicable
when the observation point lies in the plane where potential
functions are calculated. However, there exists another possi-
bility which produces the same results with less computation
time, as explained below.

2) Solving the 3-D Wave Equation:Both and are so-
lutions of the wave equation when conditions (7), (8) are
imposed

(29)

(30)

Here, and are volume currents and are assumed to
be related to the equivalent surface currents as ,
with being the dimension of the patch.
Due to the 2-D character of the excitation, the vector potential
functions must be symmetrical in respect with the excitation
plane. In this approach, the numerical absorbing boundary
condition must be imposed in the case of open problems at
outer boundaries of the 3-D numerical region.

Both approaches were simulated and it was found that five
layers above the current sheet are enough to obtain the same
results (the relative difference at most is 5%) when applying
Liao’s [9] with the second approach. The wave equation
is solved by an explicit scheme [12].

III. D ISCRETIZATION AND NUMERICAL IMPLEMENTATION

A. Common Algorithm

Surface currents are considered constant at every patch but
second-order interpolation in time is applied to calculate their
value at the given retarded time, i.e. three points in neighboring
time-points are needed.

The electric currents and the magnetic currents are displaced
in time by half a step which ensures correct treatment of the
time derivatives. For exact evaluation of the space derivatives

and , displacement in space by half a step is
needed, too. The equivalent current components ( )

and ( ) are situated at points displaced by half a
step along both and axes (Fig. 2). The components of the
integrals are calculated at the points of the respective
currents.

The time-step and the space-step are related to the
higher speed of light in the structureby

(31)

Fig. 2. Space displacement of surface currents.

where is chosen to be , if potential functions are
calculated only by integration, and , if the 3-D wave
equation is solved.

Introducing the following notations:

the following discretized equations for observation points at
the dielectric interface are obtained:

(32)

(33)

where .
The electric currents at the conducting surfaces are calcu-

lated by the MFIE

(34)

where the index indicates the respective region .
The above equations provide the algorithm for a marching-

on-in-time procedure. All right-hand members include currents
at previous moments of time. This refers to and

, too. The self-patch contribution (where retardation
is zero) is simply nullified because of the opposite signs
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of currents at the interface. The integrals in in the
equation for the surface currents at conductors also include
retarded magnetic currents, which are nonzero only at the
interface patches away from the conducting surfaces.

The algorithm produces only the tangential components of
the surface fields, but the normal ones can be easily derived
by the boundary relations

(35)

(36)

B. Excitation

Unlike scattering problems where the incident field is usu-
ally analytically calculated as a Gaussian pulse in time, in the
considered case of a transmission-line problem, it is calculated
numerically by integrating the source plane according to the
common algorithm. The presented results were obtained by
an electric currents’ excitation. These currents have only-
component and the excitation sheet is situated under the strip
in region 1 (see Fig. 1). Currents are considered constant
at the whole sheet and are a Gaussian pulse function of
time. The excitation plane is discretized in the same way
as the boundaries of both regions. Obviously, the excitation
of equivalent currents comes from the [see (14)].
The excitation of currents is obtained from the
[see (13)]. Explicitly, this term is calculated according to the
relations

If the operator is inserted under the sign of the integral
one obtains [4]

(37)

The term denoting the current’s divergence at a
fixed retarded time obviously equals zero since the currents
are a constant function of space coordinates at the source
plane; however, the first term is nonzero and it yields (Gauss
theorem)

(38)

where denotes the inward normal of the contour bounding
the source plane. Therefore, this integration is performed to
correctly represent the current’s excitation.

IV. NUMERICAL RESULTS

Two microstrip structure simulations are presented and
compared with results obtained by a FDTD algorithm with
perfectly matched-layer (PML) boundary conditions. The code
is written in FORTRAN 90 which provides convenient tools
for matrix manipulations.

Fig. 3. Longitudinal component of electric currentJz ; t = 90�t.

Fig. 4. Longitudinal component of electric currentJz ; t = 130�t.

1) Microstrip Line: Numerical simulation was carried out
for the microstrip line in Fig. 2 with number of space steps

in the -direction, in the -direction, strip
width and substrate thickness . The space-step
is mm. The dielectric constant of the substrate is

. The Gaussian pulsewidth (from maximum value to
cut point) is assumed

(39)

The algorithm appears to be very sensitive to the choice of,
which must satisfy

which, in turn, ensures smooth excitation and truncation level
of the pulse at approximately140 dB. The amplitude of the
excitation surface currents is set to , where is
the impedance of the dielectric region.

Fig. 3 shows the longitudinal surface current ( com-
ponent) at time-step 90 , and Fig. 4 shows the same current
at . The normal component was also calculated
by (35), and can be seen in Fig. 5.

2) Microstrip Open End:A simple discontinuity of the
above microstrip (see Fig. 6) is analyzed for a substrate with
dielectric constants . The source plane is located
exactly at the middle of the line and the open end is located
at . Figs. 7 and 8 show the incident and reflected
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Fig. 5. Normal component of magnetic fieldHx; t = 90�t.

Fig. 6. Open-end microstrip line.

Fig. 7. Jz component,t = 90�t.

current. Fig. 9 shows the expected singular behavior of
current ( component) at the open end. Figs. 10–12 show
the results obtained by the FDTD algorithm with electric-field
excitation at the same excitation plane. It must be noted that
the component by the FDTD algorithm is calculated a
half-step above the interface (in the air) as a result of the Yee
cell location at conducting planes or dielectric interfaces.

The calculation time by the proposed algorithm is mostly
determined by the itegration of remote planes and for the
above structure takes approximately 7 min for the pulse to
be fully absorbed (350 time-steps). Memory requirements are
determined by the storage of , , , values at every
surface point back to a time-point determined by the largest
dimension of the structure. Thus, for the above structure, the
time-history package should contain

Fig. 8. Jz component,t = 110�t.

Fig. 9. Ky component,t = 100�t.

Fig. 10. Hy component,t = 90�t, FDTD–PML.

number of elements. Here, is the constant defined in (31).
Besides, at conductor planes . Therefore,
the memory requirements depend: 1) on the presence of
conductors; 2) on the geometry of the structure; and 3) on
the dielectric constant.

V. CONCLUSION

A new possibility for the TDIE analysis of transient fields
in layered structures is proposed in this paper. The integral
equations are represented and numerically solved by a novel
finite-difference approach. A technique for coupling the inte-
gral equations on mixed conductor and dielectric interfaces has
been developed. It has been proven that infinite planes can be
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Fig. 11. Hy component,t = 110�t, FDTD–PML.

Fig. 12. Ez component,t = 100�t, FDTD–PML.

treated by imposing the radiation condition for the equivalent
currents in the region outer to the finite numerical plane. It
has further been shown that the method is especially suitable
for radiating and open boundary problems.
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