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Abstract—A numerical algorithm for the analysis of transient yet applies a finite-difference approach for their solution. This
electromagnetic fields in planar structures is proposed based approach is known to reduce the singularity of the kernel of

on the time-domain magnetic-field integral equation (MFIE), {he eyaluated integrals which now appear to be exactly the
electric-field integral equation (EFIE), and the marching-on-in- t tential functi R Mit 5
time approach. The field vectors are represented in terms of vector potential functions (see R. Mittra, [2]).

vector potential functions which are calculated either by integra- A Similar approach has been applied in the present method
tion or by the three-dimensional (3-D) wave equation according to which shows a further possibility to reduce the CPU time

the geometry of the structure. Thus, the algorithm combines the and memory requirements of the TDIE by calculation of the
advantages of integral equation techniques and finite-difference vector potential functions by the 3-D wave equation, and

schemes. While this approach is applicable to any geometries, it, . e .
is especially suitable for multilayered planar structures and is to improve the overall stability by the displacement of the

competitive to the finite-difference time-domain (FDTD) method €quivalent magnetic and electric currents by a half-step in
in the case of open and radiating problems. Theoretical results are space and by a half-step in time. It presents a new possibility

verified by the analysis of a pulse propagation in a homogeneous for the implementation of the TDIE to the analysis of transient
open-end microstrip line. fields in transmission-line problems and scattering from planar
Index Terms—ntegral-equation method, time-domain analysis. structures. It is equally suited to open and closed problems
but is advantageous in comparison with the FDTD if radiating
boundaries are present. The approach is based on the surface
MFIE and EFIE, thus, reducing the 3-D problem to a 2-
NCE the finite-difference time-domain (FDTD) approacib one. At every surface point, only four tangential field
as been introduced for wide application to transiegbmponents are calculated. It is shown that infinite planes can
electromagnetic fields, the interest in time-domain integraiso be treated by reducing them to finite numerical planes.
equation (TDIE) approaches faded considerably. There werge outer-to-numerical plane integration is substituted by a
good reasons for this—high requirements in respect to centgahtour integration of the artificial contour boundary of the
processing unit (CPU) time (integration is much more timgumerical plane. The vector potential functions of self-planes
consuming than differentiation), problems with the analysisas been calculated by the 3-D wave equation, which improves
of infinitesimally thin plates where the magnetic-field integrahe overall speed of the algorithm.
equation (MFIE) is unsuitable [7] and the electric-field integral
equation (EFIE) displays instabilities at later time-steps. In ad- I
dition, the implementation of the TDIE was entirely restricted
to scattering (open) problems. ) : .
On the o?hérpharzd? the main advantage of the TDIE, i.éA.,' Time-Domain Integral Equations
easy treatment of open structures, and reduction of a threeThe conventional form of the TDIE is [1] as shown in (1)
dimensional (3-D) problem to a two-dimensional (2-D) oneédnd (2) at the bottom of the next page, whegeis the solid
remains important and attractive for many implementationgngle which opens from the point of observatiéhto the
Despite the intensive research for numerical approximationsfrface of the analyzed volum&; is the distance betweeR
radiation/transmission conditions for finite-difference scheme®)d the point of integratiory; 7 is the unit vector of (from
there are still problems with their implementation to opef? to P); @ is the inward normal of the integrated surface;
problems. Publications recently appeared which show success= t — I/v is the retarded timej*,K* is the induced electric
ful attempts to combine the advantages of finite-differenéd magnetic currentss, m are the electric and magnetic
techniques with the integral-equation approach [8], [11]. Whigharges; and thé operator isL{f} = & + 4 3L.
[11] combines the FDTD method with the integral equation In the following approach, the EFIE and MFIE are viewed
technique for remote objects, [8] is entirely based on the TDIE, & somewhat different way, i.e. the fields are expressed via
the vector potentials
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o Ki E f consequence of the third member of (13), (14), since [3
(m)_il/ Q) g+ (Q,;)XndsQ] @ q (13), (14), since [3]

N _ _ /—@—fo M—%[ x J].
so that the superposition of the fields created by both electric

and magnetic sources yields . . . '
g y The above equations are applied to describe the fields at the

- aF 1 o boundary of each region characterized by its parametarsd
H=——-V —VxA (5) :
T ot ¥+ L 1. At the common interface, they are coupled by the boundary
oA 1 conditions for their equivalent currents
:———VQO——VXF (6) (1 —(2
ot e KO = _g® (15)
Here, ¢ and ¢ are scalar potential functions related to the JO = _ 2, (16)
vector potentials via the Lorentz gauge condition ) - o
In the case of a conducting surfac€(l) = K(® = 0, and
Oy — _2V.A @) the equivalent electric currents'® and.J®, which are now
at actual currents, are decoupled.
% — _V.F 8) The equations for points at the interface of neighboring
ot regions are obtained by a linear combination of the equations
Now the TDIE can be written as for both regions and by using the above boundary conditions
. (15) and (16):
@a_H - 9 (IF)—i- VV Ir+ 8V x Iy (9) a) region 1:
at o2 at o
OF 9 - 1 . a_ - o 9K L
O— =—p—U4)+-VV.ly— =V xIr (10) Ot
at ot? € at P - Ly D )
WhereIA:‘*ZfT f :47rﬁ |: atQ(I ) IVSVS.IA +EVXIF:|
From a theoretical pomt of view, both sets of equations (1), (17)

(2) and (9), (10), are equivalent; however, from a numerical 5 7(1)
point of view there are substantial differences: 1) in the typer ot

~

=ni1 X

of integrals involved; 2) in the possibility for application 9 9
of a time-space leap-frog scheme to ensure stability of the {_Elaﬁ (I(l))+ V Vs I(l)+8tv I(l)}
time-marching solution; and 3) in the complete elimination (18)

of normal—-to—surface field components. The space operators
VV. and Vx are easy to implement for plane surfaces. In b) region 2:
this case also@ = 2x. After introducing equivalent surface

currents according to the surface relations KM
27 ot =n1 X
AxH=J (11) 52 9
~ . 7@ 7(2) 7(2)
Wx E=-K (12) { 8t2( W) - 2VSVS.IA —i—anIF}
and a limiting procedure for the observation point approaching (19)
the boundary ([1], [5]) the following equations are obtained: )
aJ .
oK o? 9 27 =f1 X
2m%:ﬁx{&g A)— VV’h+anh} (13) ot 2 )
o7 2 5 [ mﬂﬂ”y% VV7ﬂ”+aVXI@q
27ra—n><{ 8t2(IF)+ VV IF+a VxIA} (14) (20)

The singularity of the tangential fields at an observation poigiquation (17) is multiplied bya and is added to (19).
lying on the surface results in the coefficientrj2and is a Similarly, (18) is multiplied by and is added to (20). The

. 1 OK? . 1 19 . . .
H(Pt) = —— F 4+ —m.r ——[ax El+ L{[n x H P n.Hl.7 1
oA (P,1) /( Lo w+um7}>dv@+7€(sm¢[nx I+ L{lo x A7+ 817} ) s @)

v

[

@ngy:/< _é%P+L{1wX7+ p@)%Q+f< quﬁxﬁhlﬂﬁxﬂxf+mfﬁﬂ>@Q )
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B. The Artificial Contour Boundary

] [¢] O
The problem of the artificial contour boundary which arises
o (JFH2KY) in infinite cases along the and ~ axes planes are now
o o o o (JEHI2 ) considered. The planes of interest must be limited to finite

numerical planes by the artificial contour boundary. These

contours must be sufficiently far away from the source plane

, and any discontinuities of the structure. The field components

o T_, 0 outside the contour boundary for the radiation condition [4]
y can then be imposed

Fig. 1. Open microstrip line. E" _ Zwﬁ Ny - O(R_Q) (23)
L 1 _
H- _—#xE=0(R"? 24
right choice of coefficients when combining both regions’ Zw7 ( ) (24)

equa_tlons is discussed in _detall n [6]'_TO obtain a UNi9Yfhere R is the distance from a reference point (center of the
solution, o and § must satisfy the relationo(3), which is source plane) and is the unit vector ofR. From the above

positive and real. Thgy shou_ld also ensure that the coefﬁmeg ations, the following radiation conditions for the equivalent
of the second-derivative-in-time terms become the same. T% face currents are obtained:

is essential for the time-stepping procedure where the self-

patch terms in the right-hand side (RHS) §houlg vanish, thus v. = _19, (25)
providing decoupling of the equations for theand K currents ’ v dt

and elimination of the forward-in-time values. Therefares . 10K

firy /1, @Nd B = €., /&,.. In the considered example of an Vs o= v ot (26)

open microstrip structure, region (1) is the dielectric substrate ] . .
with the dielectric constant,, and region (2) is the air region Which is an expected result since the and K° currents
with &,, = 1 (see Fig. 1). For both regiong, = 1. This satisfying the radiation condition ayt — R/v) functions of

linear combination finally yields the following equations fofime. Currents satisfying the above conditions are substituted

shown that in the contribution of the outer region currents, all
terms cancel except the integrals

aKl N 82 71 72 g
o8 _HIX[NO@(IAJFIA) agt =2ﬁv2ﬁx
1 1 . 9 L T .
Lo (B T3) + v x (T4 1) lv [v <J0u>ds+/v <VQ,JW>dS] on
- r Q- Ql —p
1) s R s R
71 2 o o
o <1 1 i) 9" _ Ay x [_508_2(_? + j’%) where K° denotes the contribution to the internil of the
& ) Ot ot external-to-numerical region currents,,. The equation for
7,

1
F
+iv \Y ifl 472} 4+2V x ifl e the J°* time derivative is dual. Obviously the above surface
5Vs- ATHA integrals reduce to contour integrals

oK = £U2ﬁ>< [ij{ Jncdl +7§

e
at  on R R ”Cdl] (28)

where ', I'L. are the potentials calculated at retarded time
1 =t — R/vi. Here,u; = ¢/,/&, is the velocity of light where7i. is the outward normal to the contour of the outer
in the dielectric/ and I'% are the potentials calculated afegion. Thus, the outer region contribution reduces to inte-
retarded timer, = ¢ — R/c. The equivalent currents in thegration of the currents at the contour artificial boundary of
above potential functions also satisfy the boundary conditiolf Numerical plane. It is then added to the contribution of
(15), (16). It is now obvious that the self-patch integrals in tH@e inner patches. When treating the artificial boundary at

second-derivative-in-time terms will cancel one another due &€ dielectric-to-air interface, the same linear combinations of
the opposite signs of the equivalent currents of both regiofiguations are applied.

at the interface.

The J currents at conducting surfaces are calculated by tke Calculation of the Vector Potential Functions
MFIE (14) of the respgctive region. It is important to note The integral functionsd and F as defined in (3) and (4)
that the calculation of/ currents at conducting surfaces byare a superposition of the potentials created by all (equivalent
the separate MFIE of each region, which strongly depend and actual) sources as if radiating in free space with the
the I vector functions of the respective plane, ensures correespective dielectric and magnetic constants. There are two

calculation even in the case of infinitesimally thin plates. Thigays of calculating the contribution of every surface plane as
is shown in the presented simulations. cited below.
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1) Direct Integration: Currents are assumed constant at ev- €2 X
ery patch. Therefore, an integral of the type 4 /
1/2 1 —w/Z/ b w/2

1. = // déd £
—1/2 V(€4 Bn)2 + (n + Any)? + An S : ’

4 . -af2 0 aj2 ¥
has to be calculated. Her&n,;, An;, An; denote the number
of space steps between the observation and integration poiy. 2. Space displacement of surface currents.
This integral has an analytical solution and is quickly cal-

culated during the time-stepping procedure. The |ntegrat|9Vrf?ereq is chosen to bey = /2, if potential functions are

approach is definitely advantageous when the potentials O culated only by integration, ang= +/3, if the 3-D wave
remote planes are calculated. Of course, it is also applica Fluation is solved ' o

When_ the observation point lies in the plang where pOtem'a.Introducing the following notations:
functions are calculated. However, there exists another possi-

bility which produces the same results with less computation Ag =1 4147
time, as explained below. . . Fo =Tl 4 T2
2) Solving the 3-D Wave EquatiorBoth A and F' are so- . 1 - .
lutions of the wave equation when conditions (7), (8) are A =—T4 4142
imposed 51‘1
R 21 N _’EI—fFl—i‘fFQ
- U_12 % =l (29) . B,
L GD{€} =Ah?V,V,.E
= 1 0°F i 30 - -
—2ag T the (30) R{{} =ARV x &

be related to the equivalent surface currentsias= J/Ah, the dielectric interface are obtained:
with K, = K/Ah, Ah being the dimension of the patch. 4m (I_(’k _ I‘(’k—l)
Due to the 2-D character of the excitation, the vector potential ¢Z.,,

functions must be symmetrical in respect with t_he excitation  _ Ay % [(JXE R1/2 _ g k=12 4 B k=3/2)
plane. In this approach, the numerical absorbing boundary
condition must be imposed in the case of open problems at _iGD{A’F}k—l/Q
outer boundaries of the 3-D numerical region. ¢ )
Both approaches were simulated and it was found that five 1 . S ko1
layers above the current sheet are enough to obtain the same +qu0 (BUFS} = RIS (32)

results (the relative difference at most is 5%) when applying 7z, 1 ‘ _
Liao’s ABC [9] with the second approach. The wave equation 2”70(1 + :)(ﬂH/Q - J* 1/2)
is solved by an explicit scheme [12]. " 1
=iy x | —(For T —2R0 R + oY) + S GD{EL}R
I1l. DISCRETIZATION AND NUMERICAL IMPLEMENTATION 4
_ D (A2 R{EE}’“*/"’)} (33)
A. Common Algorithm q
Surface currents are considered constant at every patch Where Z,,, = \/LT/%-
second-order interpolation in time is applied to calculate their The electric currents at the conducting surfaces are calcu-
value at the given retarded time, i.e. three points in neighborigged by the MFIE
time-points are needed. 7, .
The electric currents and the magnetic currents are displace@ir —> (J *+1/2 — jk=1/2)
in time by half a step which ensures correct treatment of the eri

time derivatives. For exact evaluation of the space derivatives = 4, x [—(—fm ML ol k4 I M) + 21 GD
VsV,. and Vx, displacement in space by half a step is er
needed, too. The equivalent current componeVﬁéL](/Q, K;“) _{_fF_}k 4 Zwo (R{fA- }k+1/2_R{_fA_ }k—1/2)

and U§+1/2,K§) are situated at points displaced by half a 7 Er: 7 7

step along bgtfy and z axes (Fig. 2). The components of the (34)

integralsl4, Ir are calculated at the points of the respectiVnere the index indicates the respective regi¢n= 1,2).

currents. The above equations provide the algorithm for a marching-

_The time-stepAt and the space-stefih are related to the n_jn_time procedure. Al right-hand members include currents
higher speed of light in the structureby at previous moments of time. This refers o *+1/2 and

At — Ah (31) F\**1 too. The self-patch contribution (where retardation

cq is zero) is simply nullified because of the opposite signs
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of currents at the interface. The integrals ﬁ}az. k+1in the 0.015 - Jz, Am
equation for the surface currents at conductors also include
retarded magnetic currenf$, which are nonzero only at the oo01
interface patches away from the conducting surfaces.

The algorithm produces only the tangential components ofo.cos
the surface fields, but the normal ones can be easily derived

T

i [} .50 -
by the boundary relations 7 ""Iff/"““‘.‘!‘l“!‘l‘l‘!&l\ =
a, = 1 o 1_ - LK 2
S(AH) = -V, (Ax E)=--V,K (35)  ooos| et
ot Iz Iz
g, = 1 - 1 - 40
—(AE)=—-=-V,.(Ax H)=-=-V,.J. (36)
ot € € ® :
B. Excitation Fig. 3. Longitudinal component of electric currehs, t = 90A¢.

Unlike scattering problems where the incident field is usu-
ally analytically calculated as a Gaussian pulse in time, in theoots - J=4m
considered case of a transmission-line problem, it is calculated
numerically by integrating the source plane according to the ®°'
common algorithm. The presented results were obtained by
an electric currents’ excitation. These currents have anly %%
component and the excitation sheet is situated under the strip
in region 1 (see Fig. 1). Currents are considered constant °
at the whole sheet and are a Gaussian pulse function quos
time. The excitation plane is discretized in the same way
as the boundaries of both regions. Obviously, the excitation
of equivalent] currents comes from th& x I, [see (14)].

The excitation of X currents is obtained from th&V.I’
[see (13)]. Explicitly, this term is calculated according to the

relations Fig. 4. Longitudinal component of electric curreft, t = 130A¢.

5 JH(Q,7)
I'= VV./S dsq- 1) Microstrip Line: Numerical simulation was carried out

R
o ) . for the microstrip line in Fig. 2 with number of space steps
If the V. operator is inserted under the sign of the integral _ 39 iy the y-direction, L = 40 in the -direction, strip

one obtains [4] width W = 6 and substrate thicknes$ = 6. The space-step
7 7% is Ah = 0.1 mm. The dielectric constant of the substrate is
- 7Y | (Vo.J))-
F=vre [ |1=Velg|*

dsg. (37) e, = 9. The Gaussian pulsewidth (from maximum value to
cut point) is assumed = 30
The (Vg.J%). term denoting the current's divergence at a G(t) = exp [—a(t — BAH?)]. (39)
fixed retarded time- obviously equals zero since the currentﬁ. . o .
: . he algorithm appears to be very sensitive to the choice, of
are a constant function of space coordinates at the source

plane; however, the first term is nonzero and it yields (Gau\évs ich must satisfy

40

theorem) . 16
B} "= Ban?
I'= ij{ <J—> Tedl (38) which, in turn, ensures smooth excitation and truncation level
R of the pulse at approximately140 dB. The amplitude of the

citation surface currents is setd = 1/Z,,, whereZ,, is

e impedance of the dielectric region.

Fig. 3 shows the longitudinal. surface currentf{, com-
ponent) at time-step W%, and Fig. 4 shows the same current
att = 130At¢. The normalH, component was also calculated
by (35), and can be seen in Fig. 5.

Two microstrip structure simulations are presented and2) Microstrip Open End: A simple discontinuity of the
compared with results obtained by a FDTD algorithm witbove microstrip (see Fig. 6) is analyzed for a substrate with
perfectly matched-layer (PML) boundary conditions. The codbelectric constants:,, = 3. The source plane is located
is written in FORTRAN 90 which provides convenient toolexactly at the middle of the line and the open end is located
for matrix manipulations. at z = 14At. Figs. 7 and 8 show the incident and reflected

whereri. denotes the inward normal of the contour boundin
the source plane. Therefore, this integration is performed
correctly represent th& current’s excitation.

IV. NUMERICAL RESULTS
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Fig. 5. Normal component of magnetic field,, t = 90At.
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Fig. 6. Open-end microstrip line.
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current. Fig. 9 shows the expected singular behaviokgf
current (£, component) at the open end. Figs. 10-12 show
the results obtained by the FDTD algorithm with electric-field
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Fig. 9. K, componentt = 100At.
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excitation at the same excitation plane. It must be noted thag. 10. H, componentt = 90A¢, FDTD-PML.
the H, component by the FDTD algorithm is calculated a
half-step above the interface (in the air) as a result of the Yaeamber of elements. Herg, is the constant defined in (31).

cell location at conducting planes or dielectric interfaces.

Besides, at conductor plands, = K. = 0. Therefore,

The calculation time by the proposed algorithm is mostifhe memory requirements depend: 1) on the presence of
determined by the itegration of remote planes and for th@nductors; 2) on the geometry of the structure; and 3) on
above structure takes approximately 7 min for the pulse tioe dielectric constant.
be fully absorbed (350 time-steps). Memory requirements are

determined by the storage &f,, K., J,, J. values at every
surface point back to a time-point determined by the largest
dimension of the structure. Thus, for the above structure, tn'e

time-history package should contain

NT = INT(q\/s_,, A2 4 L% 4 B?)

V. CONCLUSION

A new possibility for the TDIE analysis of transient fields
layered structures is proposed in this paper. The integral
equations are represented and numerically solved by a novel
finite-difference approach. A technique for coupling the inte-
gral equations on mixed conductor and dielectric interfaces has
been developed. It has been proven that infinite planes can be
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